Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IVSMR-3.4
Paper Title CLASS INCREMENTAL LEARNING FOR VIDEO ACTION CLASSIFICATION
Authors Jiawei Ma, Xiaoyu Tao, Jianxing Ma, Xiaopeng Hong, Yihong Gong, Xi'an Jiaotong University, China
SessionMLR-APPL-IVSMR-3: Machine learning for image and video sensing, modeling and representation 3
LocationArea D
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image & video sensing, modeling, and representation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Class Incremental Learning (CIL) is a hot topic in machine learning for CNN models to learn new classes incrementally. However, most of the CIL studies are for image classification and object recognition tasks and few CIL studies are available for video action classification. To mitigate this problem, in this paper, we present a new Grow When Requirednetwork (GWR) based video CIL framework for action classification. GWR learns knowledge incrementally by modeling the manifold of video frames for each encountered action class in feature space. We also introduce a Knowledge Consolidation (KC) method to separate the feature manifolds of the old class and new class and introduce an associative matrix for label prediction. Experimental results on KTH and Weizmann demonstrate the effectiveness of the framework.