Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-3DPU.5
Paper Title SM3D: SIMULTANEOUS MONOCULAR MAPPING AND 3D DETECTION
Authors Runfa Li, Truong Nguyen, University of California, San Diego, United States
SessionSS-3DPU: Special Session: 3D Visual Perception and Understanding
LocationArea B
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine Learning for 3D Image and Video Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Mapping and 3D detection are two major issues in vision-based robotics, and self-driving. While previous works only focus on each task separately, we present an innovative and efficient multi-task deep learning framework (SM3D) for Simultaneous Mapping and 3D Detection by bridging the gap with robust depth estimation and “Pseudo-Lidar” point cloud for the first time. The Mapping module takes consecutive monocular frames to generate depth and pose estimation. In 3D Detection module, the depth estimation is projected into 3D space to generate “Pseudo-Lidar” point cloud, where Lidar based 3D detector can be leveraged on point cloud for vehicular 3D detection and localization. By end-to-end training of both modules, the proposed mapping and 3D detection method outperforms the state-of-the-art baseline by 10.0% and 13.2% in accuracy, respectively. While achieving better accuracy, our monocular multi-task SM3D is more than 2 times faster than the state of the art pure stereo 3D detector, and 18.3% faster than using two modules separately.