Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-6.1
Paper Title Classification of Rigid and Non-Rigid Transformations With Autoencoder Representations
Authors Alexis R. Tudor, Gunner Stone, Alireza Tavakkoli, Emily M. Hand, University of Nevada, Reno, United States
SessionMLR-APPL-IP-6: Machine learning for image processing 6
LocationArea E
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Feature matching in transformed images is critical to many fields of computer science, from autonomous robots to video analysis. However, most widely used feature matching algorithms vary in their ability to track features depending on whether rigid or non-rigid image transformations occur. This makes it critical, especially in real-time calculations, to be able to identify what kind of transformation is taking place quickly in order to deploy the best feature matching algorithm for that type of transformation. The proposed research uses a combined autoencoder and neural network classification model to classify rigid or non-rigid transformations in order to improve feature matching on the image pairs. This system is the first to perform this kind of analysis with representation learning and opens new ways to improving feature matching performance. We show that using this method improves the amount of feature matches found between correctly identified image pairs.