Paper ID | MLR-APPL-IVASR-1.6 | ||
Paper Title | CAM-Guided U-Net with Adversarial Regularization for Defect Segmentation | ||
Authors | Dongyun Lin, Yiqun Li, Shitala Prasad, Tin Lay Nwe, Sheng Dong, Zaw Min Oo, Institute for Infocomm Research (I2R), Singapore | ||
Session | MLR-APPL-IVASR-1: Machine learning for image and video analysis, synthesis, and retrieval 1 | ||
Location | Area D | ||
Session Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation Time: | Monday, 20 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for image & video analysis, synthesis, and retrieval | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Defect segmentation is critical in real-wold industrial product quality assessment. There are usually a huge number of normal (defect-free) images but a very limited number of annotated anomalous images. This poses huge challenges to exploiting Fully-Convolutional Networks (FCN), e.g., UNet, as they require sufficient anomalous images with defect annotations during training. To further leverage the information from normal data, a novel CAM-guided U-Net with adversarial regularization (CAM-UNet-AR) is proposed. We first modify the existing CAM-UNet to incorporate the CAMs for both normal and anomalous classes and fine-tune the segmentation network using a combined loss which jointly considers pixel-wise classification, foreground segmentation and boundary segmentation. Secondly, an auxiliary adversarial regularization module (ARM) is proposed to facilitate the segmentation network to encode the ``normal components'' from training images into consistent representations. Extensive experiments on MVTec AD dataset show the superiority of our proposed network over multiple state-of-the-art U-Net variants. |