Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOM-2.2
Paper Title AN EFFICIENT IMAGE COMPRESSION METHOD BASED ON NEURAL NETWORK: AN OVERFITTING APPROACH
Authors Yu Mikami, Chihiro Tsutake, Keita Takahashi, Toshiaki Fujii, Nagoya University, Japan
SessionCOM-2: Learning-based Image and Video Coding
LocationArea H
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Image and Video Communications: Lossy coding of images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Over the past decade, nonlinear image compression techniques based on neural networks have been rapidly developed to achieve more efficient storage and transmission of images compared with conventional linear techniques. A typical nonlinear technique is implemented as a neural network trained on a vast set of images, and the latent representation of a target image is transmitted. In contrast to the previous nonlinear techniques, we propose a new image compression method in which a neural network model is trained exclusively on a single target image, rather than a set of images. Such an overfitting strategy enables us to embed fine image features in not only the latent representation but also the network parameters, which helps reduce the reconstruction error against the target image. The effectiveness of our method is validated through a comparison with conventional image compression techniques in terms of a rate-distortion criterion.