Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-NNC.1
Paper Title FILTER PRUNING VIA SOFTMAX ATTENTION
Authors Sungmin Cho, Hyeseong Kim, Junseok Kwon, Chung-Ang University, Republic of Korea
SessionSS-NNC: Special Session: Neural Network Compression and Compact Deep Features
LocationArea B
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Neural Network Compression and Compact Deep Features: From Methods to Standards
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose a novel network pruning method using the proposed relative depth-wise separable convolutions and softmax attention channel pruning. The relative depthwise separable convolution enhances conventional depth-wise separable convolutions by enabling the channel interaction, which can prevent accuracy drops even after severe pruning. The softmax attention channel pruning probabilistically expresses the importance of filters and removes unimportant channels efficiently. Experimental results demonstrate that our pruning method outperforms other state-of-the-art pruning methods in terms of Flops, parameters, and top-1 classification accuracy.