Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-2.5
Paper Title SALYPATH: A DEEP-BASED ARCHITECTURE FOR VISUAL ATTENTION PREDICTION
Authors Mohamed Amine Kerkouri, Laboratoire PRISME, université d'Orléans, France; Marouane Tliba, Institut National Des Télécommunications et TIC, Algeria; Aladine Chetouani, Rachid Harba, Laboratoire PRISME, université d'Orléans, France
SessionSMR-2: Perception and Quality Models
LocationArea F
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Human vision is naturally more attracted by some regions within their field of view than others. This intrinsic selectivity mechanism, so-called visual attention, is influenced by both high- and low-level factors; such as the global environment (illumination, background texture, etc.), stimulus characteristics (color, intensity, orientation, etc.), and some prior visual information. Visual attention is useful for many computer vision applications such as image compression, recognition, and captioning. In this paper, we propose an end-to-end deep-based method, so-called SALYPATH (SALiencY and scanPATH), that efficiently predicts the scanpath of an image through features of a saliency model. The idea is predict the scanpath by exploiting the capacity of a deep-based model to predict the saliency. The proposed method was evaluated through 2 well-known datasets. The results obtained showed the relevance of the proposed framework comparing to state-of-the-art models.