Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-IVC-DL.8
Paper Title Sandwiched image compression: Wrapping neural networks around a standard codec
Authors Onur Guleryuz, Phil Chou, Hugues Hoppe, Danhang Tang, Ruofei Du, Philip Davidson, Sean Fanello, Google LLC, United States
SessionSS-IVC-DL: Special Session: Optimized Image and Video Coding Using Deep Learning
LocationArea B
Session Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Time:Wednesday, 22 September, 08:00 - 09:30
Presentation Poster
Topic Special Sessions: Optimized image and video coding schemes using deep learning
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We sandwich a standard image codec between two neural networks: a preprocessor that outputs neural codes, and a postprocessor that reconstructs the image. The neural codes are compressed as ordinary images by the standard codec. Using differentiable proxies for both rate and distortion, we develop a rate-distortion optimization framework that trains the networks to generate neural codes that are efficiently compressible as images. This architecture not only improves rate-distortion performance for ordinary RGB images, but also enables efficient compression of alternative image types (such as normal maps of computer graphics) using standard image codecs. Results demonstrate the effectiveness and flexibility of neural processing in mapping a variety of input data modalities to the rigid structure of standard codecs. This versatility is so much so that rate-distortion-optimized neural processing seamlessly learns to transport color images using a single-channel (grayscale) codec.