Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDTEC-2.9
Paper Title PAN-SHARPENING VIA HIGH-PASS MODIFICATION CONVOLUTIONAL NEURAL NETWORK
Authors Jiaming Wang, Zhenfeng Shao, Wuhan University, China; Xiao Huang, University of Arkansas, United States; Tao Lu, Wuhan Institute of Technology, China; Ruiqian Zhang, Jiayi Ma, Wuhan University, China
SessionTEC-2: Restoration and Enhancement 2
LocationArea G
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Image and Video Processing: Restoration and enhancement
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Most existing deep learning based pan-sharpening methods have several widely recognized issues, such as spectral distortion and insufficient spatial texture enhancement, we propose a novel pan-sharpening convolutional neural network based on a high-pass modification block. Different from existing methods, the proposed block is designed to learn the high-pass information, leading to enhance spatial information in each band of the multi-spectral-resolution images. To facilitate the generation of visually appealing pan-sharpened images, we propose a perceptual loss function and further optimize the model based on high-level features in the near-infrared space. Experiments demonstrate the superior performance of the proposed method compared to the state-of-the-art pan-sharpening methods, both quantitatively and qualitatively. The proposed model is open-sourced at https://github.com/jiaming-wang/HMB.