Paper ID | MLR-APPL-IP-5.1 | ||
Paper Title | UNIVERSAL ADVERSARIAL ROBUSTNESS OF TEXTURE AND SHAPE-BIASED MODELS | ||
Authors | Kenneth Co, Luis Muñoz-González, Imperial College London, United Kingdom; Leslie Kanthan, DataSpartan, United Kingdom; Ben Glocker, Emil Lupu, Imperial College London, United Kingdom | ||
Session | MLR-APPL-IP-5: Machine learning for image processing 5 | ||
Location | Area E | ||
Session Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation Time: | Tuesday, 21 September, 13:30 - 15:00 | ||
Presentation | Poster | ||
Topic | Applications of Machine Learning: Machine learning for image processing | ||
IEEE Xplore Open Preview | Click here to view in IEEE Xplore | ||
Abstract | Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance. |