Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSMR-2.1
Paper Title AN EFFECTIVE SHARPNESS ASSESSMENT METHOD FOR SHALLOW DEPTH-OF-FIELD IMAGES
Authors Zhixiang Duan, Guangxin Li, Xidian University, China; Guoliang Fan, School of Electrical and Computer Engineering, United States
SessionSMR-2: Perception and Quality Models
LocationArea F
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Image and Video Sensing, Modeling, and Representation: Perception and quality models for images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract No-reference (NR) image sharpness assessment is an important issue for image quality assessment and algorithm performance evaluation. Many objective NR sharpness assessment metrics have been proposed which are often intended to be strongly associated with the human visual system (HVS). However, recent studies show that common sharpness assessment indicators may misjudge the degree of burring for images with shallow depth of field that are often used to highlight the main subject in the view. This paper proposes an efficient no-reference objective image sharpness assessment metric based on the product of bidirectional pixel intensity differences that is computed block-by-block (PBDB). This paper contributes the following: (1) the sharpness of shallow depth-of-field images can be accurately evaluated with the proposed algorithm when traditional methods do not work well. (2) Experimental results on three public datasets demonstrate competitiveness and effectiveness of the proposed algorithm when compared with several state-of-the-art methods.