Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MIA.3
Paper Title EVOLVING DEEP ENSEMBLES FOR DETECTING COVID-19 IN CHEST X-RAYS
Authors Piotr Bosowski, Silesian University of Technology, Poland; Joanna Bosowska, Medical University of Silesia, Poland; Jakub Nalepa, Silesian University of Technology, Poland
SessionSS-MIA: Special Session: Deep Learning and Precision Quantitative Imaging for Medical Image Analysis
LocationArea A
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Special Sessions: Deep Learning and Precision Quantitative Imaging for Medical Image Analysis
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Since its outbreak reported in late 2019 in Wuhan, China, the novel coronavirus disease (COVID-19) has been the major challenge across the globe, affecting virtually all aspects of our lives. To effectively manage the pandemic, we need fast, non-invasive, and precise routines for detecting active COVID-19 cases. Although there exist deep learning approaches for detecting COVID-19 in medical image data, their generalization abilities remain unknown. We tackle this issue and introduce deep ensembles that benefit from a wide range of architectural advances, alongside a new fusing approach to deliver accurate predictions. Also, we evolve their content to not only accelerate the inference but also to boost the classification performance. Our experiments, performed on a number of datasets of chest X-ray images, show that the proposed technique renders high-quality classification and generalizes well over a variety of test scans.