Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-CIMM.5
Paper Title Strategies of Deep Learning for Tomographic Reconstruction
Authors Xiaogang Yang, Christian Schroer, Deutsches Elektronen-Synchrotron DESY, Germany
SessionSS-CIMM: Special Session: Computational Imaging for Materials and Microscopy
LocationArea B
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Special Sessions: Computational Imaging for Materials and Microscopy
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this article, we introduce three different strategies of tomographic reconstruction based on deep learning. These algorithms are model-based learning for iterative optimization. We discuss the basic principles of developing these algorithms. The performance of them is analyzed and evaluated both on theory and simulation reconstruction. We developed open-source software to run these algorithms in the same framework. From the simulation results, all these deep learning algorithms showed improvements in reconstruction quality and accuracy where the strategy based on Generative Adversarial Networks showed the advantage especially.