Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDARS-9.11
Paper Title ADVERSARIAL UNSUPERVISED VIDEO SUMMARIZATION AUGMENTED WITH DICTIONARY LOSS
Authors Michail Kaseris, Ioannis Mademlis, Ioannis Pitas, Aristotle University of Thessaloniki, Greece
SessionARS-9: Interpretation, Understanding, Retrieval
LocationArea I
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Image and Video Analysis, Synthesis, and Retrieval: Image & Video Storage and Retrieval
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Automated unsupervised video summarization by key-frame extraction consists in identifying representative video frames, best abridging a complete input sequence, and temporally ordering them to form a video summary, without relying on manually constructed ground-truth key-frame sets. State-of-the-art unsupervised deep neural approaches consider the desired summary to be a subset of the original sequence, composed of video frames that are sufficient to visually reconstruct the entire input. They typically employ a pre-trained CNN for extracting a vector representation per RGB video frame and a baseline LSTM adversarial learning framework for identifying key-frames. In this paper, to better guide the network towards properly selecting video frames that can faithfully reconstruct the original video, we augment the baseline framework with an additional LSTM autoencoder, which learns in parallel a fixed-length representation of the entire original input sequence. This is exploited during training, where a novel loss term inspired by dictionary learning is added to the network optimization objectives, further biasing key-frame selection towards video frames which are collectively able to recreate the original video. Empirical evaluation on two common public relevant datasets indicates highly favourable results.