Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOM-3.7
Paper Title DYNAMIC POINT CLOUD GEOMETRY COMPRESSION USING CUBOID BASED COMMONALITY MODELING FRAMEWORK
Authors Ashek Ahmmed, Manoranjan Paul, Charles Sturt University, Australia; Manzur Murshed, Federation University, Australia; David Taubman, University of New South Wales, Australia
SessionCOM-3: Image and Video Communications
LocationArea H
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic Image and Video Communications: Lossy coding of images & video
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Point cloud in its uncompressed format require very high data rate for storage and transmission. The video based point cloud compression (V-PCC) technique projects a dynamic point cloud into geometry and texture video sequences. The projected geometry and texture video frames are then encoded using modern video coding standard like HEVC. However, HEVC encoder is unable to exploit the global commonality that exists within a geometry frame and between successive geometry frames to a greater extent. This is because in HEVC, the current frame partitioning starts from a rigid 64x64 pixels level without considering the structure of the scene need be coded. In this paper, an improved commonality modeling framework is proposed, by leveraging on cuboid-based frame partitioning, to encode point cloud geometry frames. The associated frame-partitioning scheme is based on statistical properties of the current geometry frame and therefore yields a flexible block partitioning structure composed of cuboids. Additionally, the proposed commonality modeling approach is computationally efficient and has a compact representation. Experimental results show that if the V-PCC reference encoder is augmented by the proposed commonality modeling technique, a bit rate savings of 2.71% and 4.25% are achieved for full body and upper body of human point clouds' geometry sequences respectively.