Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLR-APPL-IP-3.9
Paper Title HUMAN VISION-LIKE ROBUST OBJECT RECOGNITION
Authors Peng Kang, Northwestern University, United States; Hao Hu, University of British Columbia, Canada; Srutarshi Banerjee, Henry Chopp, Aggelos K. Katsaggelos, Oliver Cossairt, Northwestern University, United States
SessionMLR-APPL-IP-3: Machine learning for image processing 3
LocationArea F
Session Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Time:Tuesday, 21 September, 08:00 - 09:30
Presentation Poster
Topic Applications of Machine Learning: Machine learning for image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Previous research always solely utilizes Artificial Neural Networks (ANNs) or Spiking Neural Networks (SNNs) for object recognition. However, evidence in neuroscience suggests that the visual processing in human vision is performed hierarchically in the combination of analog and digital processing. To construct a more human vision-like object recognition system, we propose a general hierarchical ANN-SNN model. We evaluate our model and its variants on two popular datasets to show its effectiveness, robustness, efficiency, and generality. Extensive experiments clearly demonstrate the superiority of our proposed models for robust object recognition.