Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOVID-IP-1.6
Paper Title POCFormer: A LIGHTWEIGHT TRANSFORMER ARCHITECTURE FOR DETECTION OF COVID-19 USING POINT OF CARE ULTRASOUND
Authors Shehan Perera, The Ohio State University, United States; Srikar Adhikari, University of Arizona, United States; Alper Yilmaz, The Ohio State University, United States
SessionCOVID-IP-1: COVID Related Image Processing 1
LocationArea C
Session Time:Monday, 20 September, 15:30 - 17:00
Presentation Time:Monday, 20 September, 15:30 - 17:00
Presentation Poster
Topic COVID-Related Image Processing: COVID-related image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The rapid and seemingly endless expansion of COVID-19 can be traced back to the inefficiency and shortage of testing kits that offer accurate results in a timely manner. An emerging popular technique, which adopts improvements made in mobile ultrasound technology, allows for healthcare professionals to conduct rapid screenings on a large scale. We present an image-based solution that aims at automating the testing process which allows for rapid mass testing to be conducted with or without a trained medical professional that can be applied to rural environment and third world countries. Our contributions towards rapid large-scale testing includes a novel deep learning architecture capable of analyzing ultrasound data that can run in real time and significantly improve the current state-of-theart detection accuracies using image based COVID-19 detection.