Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-MMSDF-2.6
Paper Title ERROR DIFFUSION HALFTONING AGAINST ADVERSARIAL EXAMPLES
Authors Shao-Yuan Lo, Vishal Patel, Johns Hopkins University, United States
SessionSS-MMSDF-2: Special Session: AI for Multimedia Security and Deepfake 2
LocationArea A
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Applications of Machine Learning: Machine learning for information forensics and security
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Adversarial examples contain carefully crafted perturbations that can fool deep neural networks (DNNs) into making wrong predictions. Enhancing the adversarial robustness of DNNs has gained considerable interest in recent years. Although image transformation-based defenses were widely considered at an earlier time, most of them have been defeated by adaptive attacks. In this paper, we propose a new image transformation defense based on error diffusion halftoning, and combine it with adversarial training to defend against adversarial examples. Error diffusion halftoning projects an image into a 1-bit space and diffuses quantization error to neighboring pixels. This process can remove adversarial perturbations from a given image while maintaining acceptable image quality in the meantime in favor of recognition. Experimental results demonstrate that the proposed method is able to improve adversarial robustness even under advanced adaptive attacks, while most of the other image transformation-based defenses do not. We show that a proper image transformation can still be an effective defense approach. Code: https://github.com/shaoyuanlo/Halftoning-Defense