Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDCOVID-IP-2.7
Paper Title PHYSIOLOGICAL MONITORING OF FRONT-LINE CAREGIVERS FOR CV-19 SYMPTOMS: MULTI-RESOLUTION ANALYSIS & CONVOLUTIONAL-RECURRENT NETWORKS
Authors Omid Dehzangi, Paria Jeihouni, Victor Finomore, Ali Rezai, West Virginia University, United States
SessionCOVID-IP-2: COVID Related Image Processing 2
LocationArea A
Session Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Time:Tuesday, 21 September, 13:30 - 15:00
Presentation Poster
Topic COVID-Related Image Processing: COVID-related image processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Due to easy transmission of the COVID-19, a crucial step is the effective screening of the front-line caregivers are one of the most vulnerable populations for early signs and symptoms, resembling the onset of the disease. Our aim in this paper is to track a combination of biomarkers in our ubiquitous experimental setup to monitor the human participants’ operating system to predict the likelihood of the viral infection symptoms during the next 2 days using a mobile app, and an unobtrusive wearable ring to track their physiological indicators and self-reported symptoms. we propose a multi-resolution signal processing and modeling method to effectively characterize the changes in those physiological indicators. In this way, we decompose the 1-D input windowed time-series in multi-resolution (i.e. 2-D spectro-temporal) space. Then, we fitted our proposed deep learning architecture that combines recurrent neural network (RNN) and convolutional neural network (CNN) to incorporate and model the sequence of multi-resolution snapshots in 3-D time-series space. The CNN is used to objectify the underlying features in each of the 2D spectro-temporal snapshots, while the RNN is utilized to track the temporal dynamic behavior of the snapshot sequences to predict the patients' COVID-19 related symptoms. As the experimental results show, our proposed architecture with the best configuration achieves 87.53% and 95.12% average accuracy in predicting the COVID-19 related symptoms.