Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDTEC-4.8
Paper Title TWO-WAY GUIDED SUPER-RESOLUTION RECONSTRUCTION NETWORK BASED ON GRADIENT PRIOR
Authors Yanhong Liu, Sumei Li, Anqi Liu, Tianjin University, China
SessionTEC-4: Super-resolution
LocationArea G
Session Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Time:Wednesday, 22 September, 14:30 - 16:00
Presentation Poster
Topic Image and Video Processing: Interpolation, super-resolution, and mosaicing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Deep convolutional neural networks (CNNs) have demonstrated remarkable progress on single image super-resolution (SISR). However, most networks do not make full use of the rich prior information of the image itself, and get smoother results. To solve this problem, we propose a two-way guided super-resolution reconstruction network based on gradient prior (TWGSR), which uses gradient branches to achieve two-way guidance and employs multi-level gradient loss constraints to reconstruct high-resolution images with more textures. In addition, we propose a multi-scale module (MSM), which adopts dilated convolution to aggregate feature information of different scales, and we add an error feedback module (EFM) to compensate for sampling errors to refine the extracted feature maps. Furthermore, we propose an improved cross residual-in-residual dense block (CRRDB) to enhance the feature extraction capability of the module. Experimental results show that our TWGSR achieves favorable performance against state-of-the-art methods.