Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-CIMM.1
Paper Title PHASE RETRIEVAL FROM 4-DIMENSIONAL ELECTRON DIFFRACTION DATASETS
Authors Thomas Friedrich, Chu-Ping Yu, Johan Verbeek, Timothy Pennycook, Sandra Van Aert, University of Antwerp, Belgium
SessionSS-CIMM: Special Session: Computational Imaging for Materials and Microscopy
LocationArea B
Session Time:Monday, 20 September, 13:30 - 15:00
Presentation Time:Monday, 20 September, 13:30 - 15:00
Presentation Poster
Topic Special Sessions: Computational Imaging for Materials and Microscopy
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We present a computational imaging mode for large scale electron microscopy data, which retrieves a complex wave from noisy/sparse intensity recordings using a deep learning approach and subsequently reconstructs an image of the specimen from the Neural Network (NN) predicted exit waves. We demonstrate that an appropriate forward model in combination with open data frameworks can be used to generate large synthetic datasets for training. In combination with augmenting the data with Poisson noise corresponding to varying dose-values, we effectively eliminate overfitting issues. The U-NET based architecture of the NN is adapted to the task at hand and performs well while maintaining a relatively small size and fast performance. The validity of the approach is confirmed by comparing the reconstruction to well-established methods using simulated, as well as real electron microscopy data. The proposed method is shown to be effective particularly in the low dose range, evident by strong suppression of noise, good spatial resolution, and sensitivity to different atom types, enabling the simultaneous visualisation of light and heavy elements and making different atomic species distinguishable. Since the method acts on a very local scale and is comparatively fast it bears the potential to be used for near-real-time reconstruction during data acquisition.