Login Paper Search My Schedule Paper Index Help

My ICIP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper ID3D-1.10
Paper Title TOWARD UNSUPERVISED 3D POINT CLOUD ANOMALY DETECTION USING VARIATIONAL AUTOENCODER
Authors Mana Masuda, Ryo Hachiuma, Ryo Fujii, Hideo Saito, Keio University, Japan; Yusuke Sekikawa, Denso IT Laboratory, Japan
Session3D-1: Point Cloud Processing 1
LocationArea J
Session Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Time:Tuesday, 21 September, 15:30 - 17:00
Presentation Poster
Topic Three-Dimensional Image and Video Processing: Point cloud processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we present an end-to-end unsupervised anomaly detection framework for 3D point clouds. To the best of our knowledge, this is the first work to tackle the anomaly detection task on a general object represented by a 3D point cloud. We propose a deep variational autoencoder based unsupervised anomaly detection network adapted to the 3D point cloud and an anomaly score specifically for 3D point clouds. To verify the effectiveness of the model, we conducted extensive experiments on ShapeNet dataset. Through quantitative and qualitative evaluation, we demonstrate that the proposed method outperforms the baseline method.